Sapphire™ Biomolecular Imager
Breakthrough image capture and analysis

The Sapphire Biomolecular Imager is a next generation laser scanning system that provides you with exceptional data quality through extremely sensitive detection, ultra high resolution and broad linear dynamic range.

- Improved multiplex fluorescent detection
- Chemiluminescence imaging, surpassing film
- Higher sensitivity for lower limits of detection (femtograms)
- Broad linear dynamic range for accurate quantitation
- Ease of use with intuitive control software

* Patent pending

This system supports long and short wavelengths of near infrared fluorescence (NIR), red/green/blue (RGB) imaging, chemiluminescent imaging, phosphor imaging as well as optical densitometry (OD) of proteins in stained gels.*
CHEMILUMINESCENCE IMAGING

Enhance your Detection
- Femtogram detection of protein
- The speed and sensitivity of traditional film with 4X the dynamic range

FLUORESCENCE IMAGING

Improve Your Quantitation
- Stable fluorescent signals enable reliable quantitation of weak and strong bands
- Probe for multiple proteins on a single blot, and get more results from each sample

PHOSPHOR IMAGING

Improve Your Flexibility
- Scan storage phosphor screens for filmless autoradiography
- Wide dynamic range for sensitive detection
FLUORESCENCE

Fluorescent probes are much more stable than traditional chemiluminescent methods since they do not rely on enzyme activity and substrate breakdown. This makes them ideal for quantitative analysis delivering consistent signal even months after the initial analysis.

Choose from multiple fluorescent dyes for sensitive results. Supporting a wide range of visible and NIR dyes, the Sapphire Biomolecular Imager enables low limits of detection.

- **Sample**: AzureSpectra 490 labeled purified BSA
 - **Imaging**: 488
 - **LOD**: 0.72 pg
 - **DR**: 6.3
 - **Linearity**: $R^2=0.99$

- **Sample**: AzureSpectra 550 labeled purified transferrin
 - **Imaging**: 520
 - **LOD**: 2.9 pg
 - **DR**: 5.7
 - **Linearity**: $R^2=0.992$

- **Sample**: AzureSpectra 650 labeled purified transferrin
 - **Imaging**: 658
 - **LOD**: 2.9 pg
 - **DR**: 5.7
 - **Linearity**: $R^2=0.993$

- **Sample**: AzureSpectra 700 labeled purified transferrin
 - **Imaging**: 658
 - **LOD**: 1.45 pg
 - **DR**: 6.0
 - **Linearity**: $R^2=0.999$

- **Sample**: AzureSpectra 800 labeled purified transferrin
 - **Imaging**: 784
 - **LOD**: 2.9 pg
 - **DR**: 5.7
 - **Linearity**: $R^2=0.99$
FLUORESCENCE: APPLICATIONS

Quantitative Western Blots

Fluorescent Westerns enable quantification of post-translation modifications without stripping and reprobing. Spectrally separate the channels to resolve protein changes, and use a loading control to normalize for lane to lane loading variation.

Multiplex fluorescent detection of STAT1 (Cy3), Phospho-STAT1 (IR700), and GAPDH (IR800) in HeLa lysates. Composite image shows simultaneous detection of three proteins.

See multiple proteins on the same blot

With multiplex fluorescence, you can detect up to 4 targets simultaneously, with a high degree of sensitivity in each channel. Reduce errors from blot to blot variations by probing for multiple targets on the same blot, without stripping and reprobing. With the Sapphire Biomolecular Imager, up to 4 different fluorescent probes can be used and imaged at once.
FLUORESCENCE: APPLICATIONS

High Resolution Gel Imaging

2D Electrophoresis and 2D-DIGE are used to accurately quantitate subtle changes in protein expression. High sensitivity, broad dynamic range, and resolution down to 10 microns make the Sapphire Biomolecular Imager suited for 2D electrophoresis applications, enabling you to detect changes in complex samples.

Laser-based imaging delivers sharp and crisp DNA and protein gel images. Common DNA dyes such as EtBr and SYBR Green allow you to detect your DNA size or concentration. Visible protein stains, such as Coomassie Blue, and fluorescent protein stains, like Sypro Ruby, are also compatible with the Sapphire Biomolecular Imager.

Untreated HeLa lysate was labeled with Cy3. Treated HeLa lysate was labeled with Cy5. Samples were simultaneously separated using IEF in the first dimension and SDS-PAGE in the second dimension.

Purified transferrin was serially diluted 1:1 from 5000 pg to 5 pg and separated using SDS-PAGE in a 4-15% Tris-Glycine gel. After separation, the gel was stained using Coomassie Blue and imaged using the 658 laser of the Sapphire Biomolecular Imager.
FLUORESCENCE: APPLICATIONS

Cell-Based Assays in Microplates

Detect proteins in fixed cultured cells using target-specific primary antibodies and fluorescently conjugated secondary antibodies. Quickly and accurately measure relative protein expression in multiple samples, targeting several proteins with spectrally distinct dyes.

HeLa cells were serially diluted and seeded into a 96-well plate, cultured, fixed and permeabilized, then probed for Tubulin with AzureSpectra 550 (520 channel, green), beta-Actin with AzureSpectra 800 (784 channel, blue) and RedDot™1 Nuclear Stain as a normalization control (658 channel, red).

Slide-Based Imaging

High resolution imaging, down to 10 microns, enables visualization of small features. Image fluorescent DNA and protein arrays, or tissue slides on the Sapphire Biomolecular Imager.

Full Moon BioSystems Scanner Calibration Slide scanned at 10 µm resolution using the 520 nm and 650 nm channels of the Sapphire Biomolecular Imager.
CHEMILUMINESCENCE

The sensitivity of chemiluminescent detection provides fast detection of low abundance proteins. Chemiluminescence can be more sensitive than other detection techniques due to the amplification of signal by enzyme activity. Additionally, most samples have no “background” signal, and are ideal for researchers who want the cleanest images.
CHEMILUMINESCENCE: APPLICATIONS

Western Blotting

Digital imaging enables a wide dynamic range for chemiluminescent imaging. Traditional film saturates quickly, making it hard to distinguish weak and strong bands simultaneously.

Purified transferrin serially diluted and detected with chemiluminescent Western using Azure Radiance Substrate. Exceptional signal over background ratios allow for detection of small quantities of protein with the Sapphire Biomolecular Imager compared to film.

Simultaneous imaging of chemiluminescent samples and colored molecular weight markers. Images are captured serially, and then overlaid within the capture software.
PHOSPHOR IMAGING

To detect radioactive signals using phosphor imaging, samples containing radiolabeled samples are exposed to a storage phosphor screen. Light is emitted from the screen in proportion to the amount of radioactivity in the sample upon laser-induced stimulation.

Filmless autoradiography

American Radiolabeled Chemicals Carbon-14 standard exposed to Storage Phosphor Screen for three hours then imaged on the Sapphire Biomolecular Imager.

- Sample: \(^{14}\)C autoradiographic standard
- Imaging: Phosphor
- LOD: 0.036 µCi/g
- DR: 5.4 orders of magnitude
- Linearity: \(R^2=0.99\)
Application driven software makes setting up imaging protocols simple. Sapphire Capture software is designed to walk you through the steps to set up the perfect imaging parameters.

AzureSpot Analysis software designed for quantitation. View and analyze single and multichannel images.
TECHNOLOGY DRIVEN PERFORMANCE

Discover more with a laser-based imager. The quality of excitation light affects image quality and your ability to detect subtle changes. The Sapphire Biomolecular Imager uses up to 4 solid state lasers as excitation sources.
The Sapphire Biomolecular Imager’s patent pending design uses 3 different detection modes to deliver ultimate application flexibility. Using PMTs, APDs, and CCD, the Sapphire is a unique system designed for visible fluorescence, NIR fluorescence, and chemiluminescent imaging.
Choose from four models

<table>
<thead>
<tr>
<th>Model</th>
<th>NIR Fluorescence</th>
<th>Chemi Imaging</th>
<th>Phosphor Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAPPHIRE NIR</td>
<td>✓</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td>SAPPHIRE RGB</td>
<td></td>
<td></td>
<td>optional</td>
</tr>
<tr>
<td>SAPPHIRE RGBNIR</td>
<td>✓</td>
<td>✓</td>
<td>optional</td>
</tr>
<tr>
<td>SAPPHIRE PI</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Choose from four models

- **SAPPHIRE NIR**
 - NIR Fluorescence: ✓
 - Chemi Imaging: optional
 - Phosphor Imaging: optional

- **SAPPHIRE RGB**
 - RGB Fluorescence: ✓
 - Chemi Imaging: optional
 - Phosphor Imaging: optional

- **SAPPHIRE RGBNIR**
 - RGB Fluorescence: ✓
 - NIR Fluorescence: ✓
 - Chemi Imaging: optional
 - Phosphor Imaging: optional

- **SAPPHIRE PI**
 - Phosphor Imaging: ✓
 - Chemi Imaging: optional
<table>
<thead>
<tr>
<th>Specifications</th>
<th>Sapphire NIR</th>
<th>Sapphire RGB</th>
<th>Sapphire RGNIR</th>
<th>Sapphire PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>IS1024</td>
<td>IS1025</td>
<td>IS1026</td>
<td>IS1027</td>
</tr>
<tr>
<td>Laser excitation wavelengths</td>
<td>685, 784</td>
<td>488, 520, 658</td>
<td>488, 520, 658, 784</td>
<td>658</td>
</tr>
<tr>
<td>Bit depth</td>
<td>16 bit</td>
<td>16 bit</td>
<td>16 bit</td>
<td>16 bit</td>
</tr>
<tr>
<td>Scanning area</td>
<td>25 cm X 25 cm</td>
</tr>
<tr>
<td>Scanning mode</td>
<td>Simultaneous or Sequential</td>
<td>Simultaneous or Sequential</td>
<td>Simultaneous or Sequential</td>
<td>Phosphor Imaging</td>
</tr>
<tr>
<td>Resolution</td>
<td>10 micron – 1000 micron</td>
</tr>
<tr>
<td>Detectors</td>
<td>Avalanche Photodiode</td>
<td>Photomultiplier Tube, Avalanche Photodiode</td>
<td>Photomultiplier Tube, Avalanche Photodiode</td>
<td>Photomultiplier Tube</td>
</tr>
<tr>
<td>Scanning speed</td>
<td>50 cm/s</td>
<td>50 cm/s</td>
<td>50 cm/s</td>
<td>50 cm/s</td>
</tr>
<tr>
<td>Filters</td>
<td>Red 725BP40, IR 832BP37</td>
<td>Blue 518BP22, Green 565BP24, Red 710BP40</td>
<td>Blue 518BP22, Green 565BP24, Red 710BP40, IR 832BP37</td>
<td>Blue 518BP22, Green 565BP24, Red 710BP40, IR 832BP37</td>
</tr>
<tr>
<td>Dimensions</td>
<td>75 cm X 45 cm X 70 cm</td>
</tr>
<tr>
<td>Weight</td>
<td>140 lbs</td>
<td>140 lbs</td>
<td>140 lbs</td>
<td>140 lbs</td>
</tr>
<tr>
<td>Power requirements</td>
<td>100 – 240 VAC ± 10%, 50/60 Hz</td>
</tr>
<tr>
<td>Computer options</td>
<td>Windows 10 laptop or Windows Pro desktop PC and 4K monitor</td>
<td>Windows 10 laptop or Windows Pro desktop PC and 4K monitor</td>
<td>Windows 10 laptop or Windows Pro desktop PC and 4K monitor</td>
<td>Windows 10 laptop or Windows Pro desktop PC and 4K monitor</td>
</tr>
<tr>
<td>Q-Module</td>
<td>Optional</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Laser excitation wavelength</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>658</td>
</tr>
<tr>
<td>Filters</td>
<td>Green 565BP24</td>
<td>Green 565BP24</td>
<td>Green 565BP24</td>
<td>Green 565BP24</td>
</tr>
<tr>
<td>Chemiluminescent Upgrade</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Imaging area, chemiluminescent</td>
<td>16 cm X 13 cm</td>
</tr>
<tr>
<td>Bit depth</td>
<td>16 bit</td>
<td>16 bit</td>
<td>16 bit</td>
<td>16 bit</td>
</tr>
<tr>
<td>Resolution</td>
<td>2688 X 2200</td>
<td>2688 X 2200</td>
<td>2688 X 2200</td>
<td>2688 X 2200</td>
</tr>
<tr>
<td>Imaging time</td>
<td>0-60 minutes</td>
<td>0-60 minutes</td>
<td>0-60 minutes</td>
<td>0-60 minutes</td>
</tr>
<tr>
<td>Visible imaging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Phosphor Imaging Module</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Sample types</td>
<td>Storage phosphor screen (imaging plate)</td>
<td>Storage phosphor screen (imaging plate)</td>
<td>Storage phosphor screen (imaging plate)</td>
<td>N/A</td>
</tr>
</tbody>
</table>